100 năm ngày sinh Kurt Gödel: Một trí tuệ vĩ đại của Lô Gich và toán học

06:59 CH @ Thứ Sáu - 09 Tháng Sáu, 2006

Theo kết quả bình chọn của tờ báo danh tiếng TIMES vào cuối thế kỷ trước, thì trong số 20 nhà khoa học được bình chọn vào số những bộ óc vĩ đại có những phát minh nhiều ảnh hưởng nhất trong thế kỷ 20 có hai nhà toán học là Alan Turing và Kurt Gödel.

Như ta đã biết, nếu A.Turing được mệnh danh là "người cha của máy tính điện tử", tác giả của "máy Turing", mô hình toán học của các máy tính điện tử hiện đại, mở đầu cho một thời đại bùng nổ của khoa học tính toán và xử lý thông tin, của trí tuệ nhân tạo,..., góp phần làm thay đổi diện mạo của văn minh nhân loại từ giữa thế kỷ 20 đến nay; thì K.Gödel nổi tiếng với các định lý về tính không đầy đủ và không tự chứng minh được tính nhất quán của các hệ toán học hình thức hóa vào đầu thập niên 1930 đã làm xáo động nền tảng của toán học, lật nhào hy vọng của cả một thế hệ toán học về việc xây dựng một nền tảng vững chắc và vĩnh viễn cho toán học, đồng thời cũng mở ra một tư duy mới cho lô gích và toán học, gây ảnh hưởng to lớn đến sự phát triển tư duy triết học và khoa học trong suốt thế kỷ 20.

Kurt Gödel sinh ngày 28 tháng 4 năm 1906 tại thành phố Brünn thuộc đế quốc Áo-Hung, ngày nay là Brno thuộc Cộng hoà Séc. Khi đế quốc Áo-Hung tan rã sau Chiến tranh thế giới lần thứ nhất, ở tuổi 12, Gödel trở thành công dân của nước Tiệp Khắc, và sau đó khi ở tuổi 23 ông trở thành công dân Áo. Khi A. Hitler xâm chiếm Áo năm 1938, ông tự động mang quốc tịch Đức ở tuổi 32. Cũng vào năm đó ông lập gia đình với Adele Nimbursky, và rồi để tránh gia nhập quân đội Đức, vào tháng Giêng năm 1940 ông cùng vợ rời Châu Âu đi sang Mỹ theo đường tàu hỏa xuyên Xi-bê-ri (Liên Xô) và Nhật Bản (trước đó ông đã sang Mỹ mấy lần vào các năm 1933-1938). Đến Mỹ lần này, Gödel được nhận một vị trí làm việc tại Viện nghiên cứu tiên tiến (Institute for Advanced Study-IAS) ở Princeton. Ông trở thành một thành viên thường trực của Viện vào năm 1946, và là giáo sư chính thức của Viện từ năm 1953. Tại đây, ông được tặng giải thưởng Einstein đầu tiên vào năm 1951, và Huân chương quốc gia về khoa học năm 1974. Vào những năm cuối đời, tình hình sức khỏe của Gödel không tốt. Ông bị bệnh hoang tưởng, luôn nghi hoặc là có người âm mưu đầu độc mình. Ông không chịu ăn uống gì, ngoại trừ các thức ăn do đích thân vợ ông làm cho. Rồi đến cuối năm 1977, chính vợ ông cũng bị ốm, không còn khả năng chuẩn bị thức ăn cho ông nữa, ông đã từ chối bất kỳ thức ăn gì được đưa đến, và ông đã bị chết đói vào ngày 14 tháng Giêng năm 1978.

Cuộc đời khoa học của Kurt Gödel được bắt đầu khá sớm. Từ những năm học trung học ở Brno, quê nhà, Gödel đã tỏ ra có năng khiếu về các môn lịch sử và toán học. Năm 18 tuổi, Gödel theo anh trai của mình sang Viên (Áo) và được nhập học tại trường Đại học Viên, vào thời gian đó ông đã nắm vững các kiến thức về Toán ở trình độ Đại học. Lúc đầu ông có dự định học Vật lý lý thuyết, nhưng vẫn theo đầy đủ các bài giảng về toán học và triết học. Ông đọc Cơ sở siêu hình của khoa học tự nhiên (Metaphysische Anfangsgründe der Naturwissenschaft) của Kant, tham gia vào nhóm thành Viên với các nhà khoa học nổi tiếng như Moritz Schlick, Hans Hahn, Rudolf Carnap... Ông nghiên cứu lý thuyết số, nhưng sau khi tham gia một xêmine của Moritz Schlick nghiên cứu sách của Bertrand Russell về triết học toán học, ông chuyển niềm say mê của mình sang lôgich toán. Một sự kiện có tác động lớn định hướng cuộc đời khoa học của Gödel vào thời gian đó là việc ông dự nghe bài giảng của nhà toán học vĩ đại David Hilbert ở Bologna về tính đầy đủ và tính nhất quán của các hệ thống toán học. Ngay sau đó, vào năm 1930, ông đã hoàn thành luận án tiến sĩ với công trình chứng minh tính đầy đủ của toán lôgich tân từ cấp một1 dưới sự hướng dẫn của Hans Hahn. Và một năm sau, 1931, Gödel công bố công trình chứa các định lý quan trọng và nổi tiếng nhất của đời mình, có nội dung là: đối với các hệ thống toán học hình thức hóa với một hệ tiên đề tính được đủ mạnh để mô tả số học các số tự nhiên, thì:

1. Hệ thống không có thể vừa là nhất quán, vừa là đầy đủ (thường được biết dưới tên gọi "Định lý về tính không đầy đủ"- incompleteness theorem)2;

2. Tính nhất quán của hệ tiên đề không thể được chứng minh bên trong hệ thống đó.

Để tìm hiểu ý nghĩa và tác động của các định lý đó đối với sự phát triển của cơ sở toán học trong thế kỷ 20, ta lược qua vài nét tình hình phát triển đó trong cuối thế kỷ 19 và đầu thế kỷ 20. Ta biết thế kỷ 19 đã là một thế kỷ phát triển khá rực rỡ của toán học, nhưng đồng thời toán học cũng đã lâm sâu vào một thời kỳ "khủng hoảng" về cơ sở: trong khi giải tích toán học và nhiều ngành liên quan đạt được nhiều kết quả phong phú và sâu sắc, thì cơ sở của các ngành toán học lại gần như trống rỗng, thậm chí đối với nhiều khái niệm nền móng như thế nào là số thực, là giới hạn, là liên tục,... cũng chưa có được những định nghĩa thỏa đáng. Vào những năm đó, David Hilbert đã bắt đầu quan tâm đến việc tìm cơ sở cho toán học. Dựa trên công trình Cơ sở của Euclid, ông đã xây dựng, bổ sung và hoàn chỉnh một hệ tiên đề trọn vẹn cho Hình học, và đề xuất việc xây dựng hệ tiên đề cho các lý thuyết toán học. Một yêu cầu cơ bản đối với các hệ tiên đề là tính nhất quán của hệ đó. Để chứng minh tính nhất quán thì có một phương pháp chung là qui dẫn tính nhất quán của một hệ này (S) về tính nhất quán của một hệ khác (S’) bằng cách tìm trong lý thuyết S’ một mô hình cho S (do đó, nếu S’ nhất quán thì S cũng nhất quán), thí dụ tính nhất quán của hệ tiên đề hình học Lobachevski có thể qui dẫn về tính nhất quán của hệ tiên đề hình học Euclid, đến lượt mình, tính nhất quán của hệ này lại có thể qui dẫn về tính nhất quán của số học. Nhưng con đường qui dẫn rồi cũng cần có điểm dừng. Và vì vậy, năm 1900 ở Paris, tại Đại hội Toán học quốc tế lần thứ hai, trong bài phát biểu đề xuất 23 bài toán nổi tiếng cho toán học thế kỷ 20, Hilbert đã đặt bài toán về Sự tương thích của các tiên đề số học, tức cũng là sự nhất quán của hệ tiên đề số học, vào vị trí bài toán số 2. Nhiều năm sau đó, Hilbert đã nghiên cứu, và đến năm 1921 đã đề xuất một cách giải trực tiếp bài toán đó mà không viện đến phương pháp qui dẫn nói trên, đề xuất này về sau được gọi là chương trình Hilbert, bao gồm việc hình thức hoá hệ tiên đề số học, biến việc làm toán trong một hệ tiên đề hóa thành một kỹ thuật chuyển đổi đơn thuần các dãy hữu hạn các ký hiệu hình thức theo một số qui tắc định trước, và chuyển việc nghiên cứu các hệ toán học hình thức hóa vào trong một siêu toán làm việc với các dãy hữu hạn ký hiệu hình thức đó. Để tránh những công kích của trường phái trực giác (intituitionism) đối với cơ sở toán học, Hilbert đề nghị phát triển một siêu toán hoàn toàn nằm trong khuôn khổ của "hữu hạn luận" (finitism), và trong một siêu toán như vậy, tính nhất quán của số học hình thức hóa S được hiểu là “không thể suy diễn từ hệ hình thức S hai công thức A và /A“ (/A là phủ định của A). Như vậy, chương trình Hilbert đã mở ra một con đường để chứng minh tính nhất quán của số học hình thức hóa nói riêng, và của toán học hình thức hóa nói chung, giải quyết một vấn đề rất cơ bản của toán học. Trong thập niên 1920, cùng với Hilbert, nhiều nhà toán học lỗi lạc như Bernays, Ackermann, John von Neumann,... đã thử thực hiện chương trình Hilbert, và có lúc tưởng như đã thành công. Rồi đến năm 1931, Gödel đã làm vỡ mộng của cả một thế hệ toán học khi công bố hai định lý về tính không đầy đủ của mình, vì theo các định lý đó, số học hình thức hóa, nếu nhất quán thì không đầy đủ và không tự chứng minh được tính nhất quán của mình! Các định lý Gödel đã làm thất bại chương trình Hilbert, đưa đến sự vỡ mộng, đồng thời cũng là một sự thức tỉnh: không thể đi tìm tính chân lý của toán học (và của khoa học nói chung) bên trong cấu trúc duy lý của bản thân toán học hay của khoa học đó; cái đúng của toán học phải tìm ngoài toán học; cái cảm giác vỡ mộng và thức tỉnh đó không chỉ đến với các nhà toán học thế hệ Gödel, mà cũng còn đến với bất kỳ ai về sau khi học tập và nghiên cứu về cơ sở toán học.

Sau các định lý nổi tiếng đó, Gödel vẫn tiếp tục các nghiên cứu về cơ sở toán học, đặc biệt là trong thời gian làm việc tại Princeton. Năm 1940, ông công bố một công trình có ý nghĩa rất quan trọng đối với lý thuyết Cantor về tập hợp, đó là việc chứng minh tính nhất quán của giả thuyết liên tục và của tiên đề chọn với các tiên đề của lý thuyết tập hợp3, cho lời giải mỹ mãn đối với bài toán số 1 trong số 23 bài toán do Hilbert đề xuất năm 1900. Cùng với thành tựu quan trọng đó, trong những năm còn lại ở Princeton, Gödel tiếp tục dành sự quan tâm của mình cho triết học và vật lý, và cũng đã có một số kết quả xuất sắc.
Tất nhiên là ngày nay, khi nói đến cống hiến của Gödel đối với lôgích và toán học nói riêng, đối với khoa học nói chung, người ta thường kể đến các định lý về tính không đầy đủ của toán học hình thức hóa và những tác động trực tiếp của chúng đối với chương trình Hilbert. Các định lý Gödel đã làm lung lay nền tảng duy lý độc tôn trong toán học và khoa học nói chung, và từ đó đã mở đường cho những hướng tư duy mới trong phát triển toán học và khoa học, như các hướng chấp nhận các lôgích đối nhất quán (paraconsistent logíc), các nghịch lý hoặc các "mâu thuẫn đúng" trong các lý thuyết toán học và khoa học, đặc biệt từ những thập niên cuối thế kỷ 20 đến nay. Con đường phát triển khoa học nói chung, toán học nói riêng, đang còn rộng mở. Chúng ta tin tưởng rằng, các công trình đầy chất trí tuệ và giàu khả năng đổi mới tư duy của Kurt Gödel sẽ còn tiếp tục cho ta những cống hiến xuất sắc mới trên con đường phát triển của tương lai.

FacebookTwitterLinkedInPinterestCập nhật lúc:

Nội dung liên quan

  • Logic hình thức và nhận thức khoa học

    15/05/2018GS. Phan Đình DiệuTrải qua hơn hai nghìn năm, từ thời Arixtốt đến nay, logic hình thức đã là công cụ đắc lực góp phần hình thành và phát triển nhiều ngành khoa học khác nhau, nó cũng là công cụ tư duy hợp lý trong mọi mặt đời sống nhận thức của con người. Ngày nay, ở giai đoạn mà con người đang có tham vọng dùng máy móc để tự động hóa từng bước các hoạt động trí tuệ...
  • Chứng minh và chân lý trong toán học

    31/03/2006Trích từ cuốn Khoa học và các khoa học của Gilles – Gaston Granger, NXB Thế giớiCông việc của nhà toán học hoàn toàn không qui về chỗ chứng minh. Các bài toán mà anh ta gặp hoặc tự đề ra cho mình chắc hẳn có thể thuộc kiểu: mệnh đề này mà tôi phỏng đoán là chân lý, tôi có thể chứng minh được không?
  • Logic toán và cơ sở toán học

    10/02/2006GS. Phan Đình DiệuBước sang đầu thế kỉ 20, lý thuyết tập hợp đã cung cấp một cơ cở tuyệt vời, làm nền tảng thống nhất cho việc xây dựng và phát triển hầu như toàn bộ các ngành toán học khác...
  • Toán học là gì?

    02/01/2006Ngọc SơnCuốn sách “What is Mathematics?” thể hiện quan điểm của tác giả về toán học dựa trên nền kiến thức Triết học duy vật rộng lớn cũng như quan điểm về việc dạy toán trong nhà trường phổ thông thầy và trò đều phải nắm chắc bản chất và ý nghĩa của môn toán học...
  • Godel và bản tính của chân lý toán học

    28/12/2005Nguyễn Tiến Văn dịch và giới thiệuĐây là cuộc trò chuyện giữa bà và tạp chí Edge ngày 6.8.2005 về việc đi tìm căn gốc của Định lí bất toàn trong toán học của Godel. Lí luận chân lí số học đúng nhưng không thể chứng minh hiện hữu trong lí luận thời cổ Hy Lạp của Epimenides. Định lí của Godel còn xuất phát từ sự chạm trán giữa các nhà lý luận thực chứng học ở Vienna (trong đó có Wittgenstein) với Gode trên lập trường triết học Platon...
  • Bản chất của Toán học hay là mối liên hệ Toán học & Thực tế

    04/08/2005Minh BùiToán học đóng vai trò là phương pháp luận khoa học, chung cho mọi ngành khoa học mà nghiên cứu những đối tượng, hiện tượng khác nhau của thực tiễn. Toán học ngày một hình thành nên những khái niệm, quy luật mới phản ánh sâu sắc hơn bản chất quan hệ số lượng và cấu trúc của hiện thực. Vì thế toán học ngày càng phục vụ hiệu quả hơn trong hoạt động thực tiễn.
  • Cấu trúc của các cuộc cách mạng khoa học

    05/07/2005Nguyễn Quang A dịchTiểu luận này là báo cáo được xuất bản đầy đủ đầu tiên về một công trình khởi đầu được hình dung ra gần mười lăm năm trước. Khi đó tôi là một nghiên cứu sinh về vật lí lí thuyết sắp hoàn thành luận văn của mình. Một sự dính líu may mắn với một cua thử nghiệm dạy khoa học vật lí cho người không nghiên cứu khoa học đã lần đầu tiên đưa tôi đến với lịch sử khoa học. Tôi hoàn toàn ngạc nhiên, rằng việc tiếp xúc với lí thuyết và thực hành khoa học lỗi thời đã làm xói mòn triệt để một số quan niệm cơ bản của tôi về bản chất của khoa học và các lí do cho thành công đặc biệt của nó.
  • Sáng tạo ở bên bờ hỗn độn...

    20/05/2005GS. Phan Đình DiệuKhả năng sáng tạo ở bên bờ hỗn độn, một khả năng phổ biến của mọi hệ thích nghi phức tạp mà ta gặp khắp nơi trong mọi lĩnh vực tự nhiên, sự sống cho đến kinh tế, chính trị, xã hội cung cấp cho con người những cách hiểu mới về cách thức tiến hoá của giới tự nhiên và qua đó sự tiến hoá của các loại hệ thống khác, kể từ khi học thuyết tiến hoá ra đời vào giữa thế kỷ 19...
  • xem toàn bộ